Besov–dunkl Spaces Connected with Generalized Taylor Formula on the Real Line
نویسندگان
چکیده
In the present paper, we define for the Dunkl tranlation operators on the real line, the Besov–Dunkl space of functions for which the remainder in the generalized Taylor’s formula has a given order. We provide characterization of these spaces by the Dunkl convolution.
منابع مشابه
Besov-Type Spaces on R and Integrability for the Dunkl Transform
In this paper, we show the inclusion and the density of the Schwartz space in Besov–Dunkl spaces and we prove an interpolation formula for these spaces by the real method. We give another characterization for these spaces by convolution. Finally, we establish further results concerning integrability of the Dunkl transform of function in a suitable Besov–Dunkl space.
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملCharacterization of Besov Spaces for the Dunkl Operator on the Real Line
In this paper, we define subspaces of L by differences using the Dunkl translation operators that we call Besov-Dunkl spaces. We provide characterization of these spaces by the Dunkl convolution.
متن کاملDunkl Translation and Uncentered Maximal Operator on the Real Line
On the real line, the Dunkl operators are differential-difference operators introduced in 1989 by Dunkl [1] and are denoted by Λα, where α is a real parameter > −1/2. These operators are associated with the reflection group Z2 on R. The Dunkl kernel Eα is used to define the Dunkl transform α which was introduced by Dunkl in [2]. Rösler in [3] shows that the Dunkl kernels verify a product formul...
متن کاملA Positive Radial Product Formula for the Dunkl Kernel
It is an open conjecture that generalized Bessel functions associated with root systems have a positive product formula for non-negative multiplicity parameters of the associated Dunkl operators. In this paper, a partial result towards this conjecture is proven, namely a positive radial product formula for the non-symmetric counterpart of the generalized Bessel function, the Dunkl kernel. Radia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017